

Journal of Photochemistry and Photobiology A: Chemistry 86 (1995) 9-14

The quantum-yield of formation of CF₂O in the gas-phase photo-oxidation of CF₃I at 253.7 nm

Kevin C. Clemitshaw a, John R. Sodeau b

^a School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
^b School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Received 22 February 1994; accepted 2 August 1994

Abstract

The quantum-yield of formation of CF_2O in the gas-phase photo-oxidation of CF_3I at 253.7 nm, $\Phi_{CF_2O}^{253.7}$, has been measured for the first time. The value obtained, $1.05\pm0.11~(\pm\sigma)$, was determined using Fourier transform infrared (FTIR) spectroscopy. CF_2O concentrations were measured by performing a Beer's Law analysis on the P and R branches of the ν_2 absorption of CF_2O at 1956.1 and 1943.1 cm⁻¹, respectively. Actinometry at 253.7 nm was carried out using the trifluoroaceticanhydride, $(CF_3CO)_2O$, (TFAA) system recommended previously (G.A. Chamberlain and E. Whittle, J. Chem. Soc. Faraday Trans. I, 71 (1975) 1978), and was based on comparison of the intensities of eight P and R vibration-rotation lines of the CO photoproduct with those of CO recorded for calibration mixtures composed of CO and TFAA. A quantum-yield of I_2 formation of 0.47 \pm 0.04 was also measured by optical absorption techniques. It is suggested that CF_2O and I_2 are formed via the decomposition of CF_3OOI , trifluoromethylperoxyhypoiodite. This species is produced in the reaction of CF_3O_2 radicals with atomic I, which acts as a chaperone for the observed chemistry.

Keywords: Photo-oxidation; FTIR spectroscopy

1. Introduction

Understanding the mechanism of the oxidation of CF₃ radicals to carbonyl fluoride, CF₂O, has assumed greater importance since recent recognition [1] that CF₃ radicals are probable intermediates in the tropospheric degradation of the substitute CFC compounds CF₃CCl₂H (HCFC-123), CF₃CClFH (HCFC-124), CF₃CF₂H (HFC-125), and CF₃CFH₂ (HFC-134a). It is now well established from several kinetic and spectroscopic studies [1] that under such conditions, CF₃ radical oxidation will be initiated by rapid association with molecular O₂ to form CF₃O₂ radicals:

$$CF_3' + O_2 + M \longrightarrow CF_3O_2' + M$$

where M is a third body. CF_3O_2 may then react in the troposphere with NO to produce CF_3O radicals directly [2]:

$$CF_3O_2$$
 + $NO \longrightarrow CF_3O$ + NO_2

or with H₂O' radicals to form CF₃O' via the photolytic decomposition of CF₃OOH [1]:

$$CF_3O_2$$
 + HO_2 + $M \longrightarrow CF_3OOH + O_2 + M$
 $CF_3OOH + h\nu \longrightarrow CF_3O$ + OH

The reaction of CF₃O₂ with the dominant tropospheric oxide of nitrogen, NO₂, is reversible and therefore does not lead to CF₃O:

$$CF_3O_2 + NO_2 + M \longrightarrow CF_3OONO_2 + M$$

 $CF_3OONO_2 + M \longrightarrow CF_3O_2 + NO_2 + M$

Experimental evidence from laboratory studies of the oxidation of CF₃ radicals in the absence of NO, NO₂ and HO₂ [3], suggests that, although probably of minor importance in the troposphere, CF₃O₂ may also yield CF₃O by reaction with atomic iodine and/or photolysis:

$$CF_3O_2$$
+I+M \longrightarrow [CF_3OOI+M] \longrightarrow CF_3O +IO+M

$$CF_3O_2 + h\nu \longrightarrow CF_3O + O$$

However, in both the laboratory studies and in the troposphere, the mechanistic pathway from CF₃O' to CF₂O is not well understood and might involve het-

erogeneous chemistry. F-atom elimination from CF₃O is an endothermic process [4] with a calculated [5] activation energy of 35 kcal mol⁻¹, and therefore likely to occur very slowly:

$$CF_3O^* \longrightarrow CF_2O + F$$
 ($\Delta H_r^{\circ} = 23.9 \text{ kcal mol}^{-1}$)

In addition, the reactions of CF₃O' with itself and with O₂ are also endothermic:

$$CF_3O' + CF_3O' \longrightarrow 2CF_2O + F_2$$

$$(\Delta H_r^{\circ} = 9.8 \text{ kcal mol}^{-1})$$

$$CF_3O' + O_2 \longrightarrow CF_2O + FO_2'$$

$$(\Delta H_r^{\circ} = 11.1 \text{ kcal mol}^{-1})$$

By contrast, the reactions of CF₃O' with atomic I and with NO₂ which either form CF₂O directly by F-atom abstraction or which proceed via CF₃OI and CF₃ONO₂, respectively, are both exothermic:

$$CF_3O'+I+M \longrightarrow [CF_3OI] \longrightarrow CF_2O+IF+M$$

 $(\Delta H_r^{\circ} = -43.5 \text{ kcal mol}^{-1})$

$$CF_3O \cdot + NO_2 + M \longrightarrow [CF_3ONO_2] \longrightarrow$$

$$CF_2O + FNO_2 + M(\Delta H_r^o = -29.0 \text{ kcal mol}^{-1})$$

Note that the overall reaction of CF₃O' with HO₂' which probably proceeds via trifluoromethanol, CF₃OH, is potentially a highly exothermic source of CF₂O:

$$CF_3O' + HO_2' \longrightarrow [CF_3OH + O_2] \longrightarrow$$

 $CF_2O + HF + O_2(\Delta H_r^{\circ} = -63.9 \text{ kcal mol}^{-1})$

as are the analogous reactions of CF_3O^* with CH_4 and C_2H_6 which are both suprisingly rapid [6]:

$$CF_3O^{\bullet} + CH_4 \longrightarrow [CF_3OH + CH_3^{\bullet}] \longrightarrow$$

$$CF_2O + HF + CH_3^{\bullet}(\Delta H_r^{\circ} = -7.8 \text{ kcal mol}^{-1})$$

$$CF_3O^{\bullet} + C_2H_6 \longrightarrow [CF_3OH + C_2H_5^{\bullet}] \longrightarrow$$

The overall reaction of CF_3O_2 with NO which forms CF_2O and FNO_2 via CF_3ONO_2 in low-temperature matrices [7] is an exothermic pathway to CF_2O (ΔH_r°) = -52.3 kcal mol⁻¹) that does not involve CF_3O . By contrast, the gas-phase reaction between CF_3O_2 and NO is believed to produce CF_3O_3 directly [2].

 $CF_2O + HF + C_2H_5(\Delta H_r^o = -12.4 \text{ kcal mol}^{-1})$

Reported here is a quantitative measurement by FTIR spectroscopy of the quantum-yield of CF₂O formed upon 253.7 nm photolysis of gas-phase CF₃I/O₂ mixtures. This study complements our previous low-temperature matrix-isolation investigations in which the intermediate species involved in the reactions of CF₃O₂ with NO [7] and with atomic I [3] were directly identified by FTIR spectroscopy. The quantum-yield of CF₂O formation of unity measured in this work further supports

the mechanism put forward for the CF₃I/O₂/Ar system [3], and is also consistent with a similarly measured value of unity for the quantum-yield of CF₂O formed upon 184.9 nm photolysis of CF₃Br/O₂ mixtures [8].

2. Experimental details

Gas mixtures were prepared on a mercury-free, pyrexglass vacuum line fitted with greaseless taps, in blackened, 'X'-configuration pyrex cells that were equipped with pairs of KBr and Spectrosil B quartz windows. The volume and infrared and ultraviolet-visible optical path lengths of the TFAA actinometer cell were 208 cm³ and 11.3 and 8.7 cm, respectively; those of the CF₃I/O₂ sample cell, which was internally coated with Tel-X teflon spray to prevent wall decomposition of the CF₂O photoproduct, were 189 cm³ and 11.3 and 7.6 cm, respectively. Gas pressures were measured with an MKS Instruments model 310 Baratron capacitance manometer (10⁻⁵-1.000 torr) and with a Wallace-Tiernan model FA141 precision dial manometer (0.0-800.0 torr). Simultaneous irradiation of the CF₃I/ O2 mixtures and the TFAA actinometer was carried out with a Philips Spectral LL low-pressure mercury lamp (Catalogue No. 92190E) fitted into a 2-port lamp housing with equal light outputs. FTIR spectra were recorded with a Digilab FTS-20V FTIR spectrometer. Each spectrum was zero-filled two fold, box-car apodised, phase corrected and computed from the co-addition of 500 scans at 0.2 cm⁻¹ resolution for TFAA and TFAA/CO calibration mixtures, and from 100 scans at a resolution of 1.0 cm⁻¹ for CF₃I/O₂ samples and CF₃I/ O₂/CF₂O calibration mixtures. Ultra-violet visible absorption spectra were recorded between 190 and 700 nm at a bandwidth of 1.0 nm using a Pye-Unicam SP8-500 spectrometer.

O₂ (Matheson, 99.999% stated purity) and CO (Chromatography Services, 99.999% stated purity) were used as received. CF₃I (Fluorochem, 97.99% stated purity) was thoroughly degassed at 77 K by a repeated freeze-pump-thaw cycle to eliminate traces of fluorine, followed by condensation onto a column of BDH type 4A molecular sieve at 77 K to remove traces of iodine. TFAA (Fluka, >99% stated purity) was degassed as above at 77 K and then at 195 K. CF₂O (Lancaster Synthesis, 98% stated purity) was transferred from its cylinder into the actinometer cell via a cold trap held at 77 K in order to minimise the introduction of CO₂ and SiF₄ which are formed by heterogeneous wall reactions. Sample assays employing FTIR or ultraviolet-visible absorption spectroscopy and mass spectrometry (Spectrum Scientific Dataquad 200 M) revealed no impurities.

3. Results and discussion

3.1. Actinometry

The output of the low-pressure mercury lamp at 253.7 nm, $I_O^{253.7}$, was measured using FTIR spectroscopy to monitor the CO product of the gas-phase photolysis of TFAA, for which the quantum-yield of formation of CO at 253.7 nm, $\Phi_{CO}^{253.7}$, has been determined at 298 K as 0.29 ± 0.02 [9]. The use of FTIR spectroscopy allowed the same method of analysis for actinometry and for quantification of the photoproducts of the CF₃I/O₂ reactant mixtures. Mass spectrometric detection at m/e = 119 of the $[C_2F_5]^+$ fragment of the C_2F_6 photoproduct of TFAA was also demonstrated but not pursued. CO and C_2F_6 are formed according to the following mechanism [9]:

$$(CF_3CO)_2O + h\nu \longrightarrow$$

$$CF_3CO + CF_3C(O)O (\lambda = 253.7 \text{ nm})$$

$$CF_3CO + M \longrightarrow CF_3 + CO + M$$

$$CF_3C(O)O + M \longrightarrow CF_3 + CO_2 + M$$

$$CF_3 + CF_3 + CF_3 + M \longrightarrow C_2F_6 + M$$

The concentration of the CO photo-product was determined by comparison of the measured intensities of the P_7 , P_8 , P_9 , P_{10} and R_5 , R_7 , R_8 and R_9 vibration-rotation lines of the 1–0 band of CO with those of CO recorded in calibration mixtures composed of CO (0.600 – 0.900 torr in 0.025 torr increments) in 65.0 torr TFAA. For example, in experiment 1 of Table 1, 65.0 torr of TFAA was photolysed at 253.7 nm for 60.0 mins. The mean value of the ratios of the intensities of the above 8 vibration-rotation lines of the CO photoproduct was closest to unity (0.99 ± 0.005, error = σ) for the mixture containing 0.750 torr CO/65.0 torr TFAA. Therefore an estimate for the concentration or

partial pressure of CO produced in experiment 1 is 0.750 torr.

The output of the low-pressure mercury lamp at 253.7 nm, $I_O^{253.7}$, was calculated from the expression:

$$I_{O}^{253.7} = \frac{d[CO]/dt}{\Phi_{CO}^{253.7}[1 - \exp(-\sigma.c.l.)]}$$
 (i)

where σ is the absorption cross-section of TFAA at 253.7 nm and 298 K (2.26×10⁻¹⁹ cm² mol⁻¹ [9]); c is the concentration of TFAA (65.0 torr; 2.09×10^{18} mol cm⁻³ at 300 K); and l is the optical path length (8.7 cm). The fraction of 253.7 nm light absorbed by TFAA, $[1-\exp(-\sigma.c.l.)]$, is therefore 0.989. d[CO]/dt, the rate of formation of CO, is given by:

$$\frac{\text{d[CO]}}{\text{d}t} = \frac{P_{\text{CO}}}{P} \frac{V_{\text{A}}}{V} \frac{T}{T_{\text{A}}} \frac{L}{t} \frac{1}{60} \text{ mol s}^{-1}$$
 (ii)

where $P_{\rm CO}$ is the partial pressure of the CO photoproduct (0.750 torr) formed after a photolysis time, t, of 60.0 mins; $T_{\rm A}$ is ambient temperature (300 K); $V_{\rm A}$ is the volume of the actinometer cell (208 cm³); V is the ideal gas molar volume at 273 K and 1 atmosphere (P, 760 torr), and L is Avogadro's number. d[CO]/dt is therefore equal to 1.394×10¹⁵ mol s⁻¹. Substituting values for $\Phi_{\rm CO}^{253.7}$), [1-exp(- σ .c.l.) and d[CO]/dt in Eq. (1) leads to a measure of the output of the low-pressure mercury lamp at 253.7 nm in experiment 1 of (4.86±0.34)×10¹⁵ quanta s⁻¹. The error of 7% arises from the uncertainty in $\Phi_{\rm CO}^{253.7}$.

3.2. Photoproducts of CF₄I/O₂

The sole infrared observable photoproduct was carbonyl fluoride, CF₂O. New absorptions in FTIR spectra of CF₃I/O₂ gas mixtures were recorded at 1956.1 and 1943.1, 1249.3, 965.8 and 774.5 cm⁻¹, which correspond to the ν_2 , ν_4 , ν_1 and ν_6 fundamental vibrations of CF₂O, respectively [10]. Fig. 1 shows FTIR absorption spectra between 2040–1840 cm⁻¹ of a mixture of 36.0 torr

Table 1 Summary of CF_3I/O_2 reactant mixture compositions and calculated quantum-yields of formation of CF_2O , $\Phi_{CF_2O}^{253.7}$, at T=300~K and at 1943.1 and 1956.1 cm⁻¹

Experiment no.	[CF ₃ I] (torr)	[O ₂] (torr)	$I_o^{235.7}$ (10 ¹⁵ qs ⁻¹)	$I_{\rm a}^{253.7}$ (10 ¹⁵ qs ⁻¹)	$d[CF_2O]/dt$ (10 ⁻² a.u. min ⁻¹)		d[CF2O]/dt $(1015 molec s-1)$			$\Phi_{ ext{CF2O}}^{253.7}$
					1943.1 cm ⁻¹	1956.1 cm ⁻¹	1943.1 cm ⁻¹	1956.1 cm ⁻¹	Mean value	
1	36.0	12.0	4.86	4.80	0.797	0.860	5.21	5.25	5,23	1.09
2	36.0	12.0	4.77	4.71	0.733	0.788	4.79	4.81	4.80	1.02
3	36.0	12.0	4.37	4.32	0.728	0.790	4.76	4.82	4.79	1.11
4	36.0	12.0	4.58	4.53	0.676	0.731	4.42	4.46	4.44	0.98
5	27.0	12.0	4.69	4.53	0.718	0.763	4.69	4.63	4.66	1.03
5	18.0	12.0	4.63	4.15	0.658	0.708	4.30	4.32	4.31	1.04
7	9.0	12.0	4.72	3.21	0.552	0.562	3.37	3.43	3.40	1.06
Mean $\pm \sigma$										$1.05 \pm 0.$

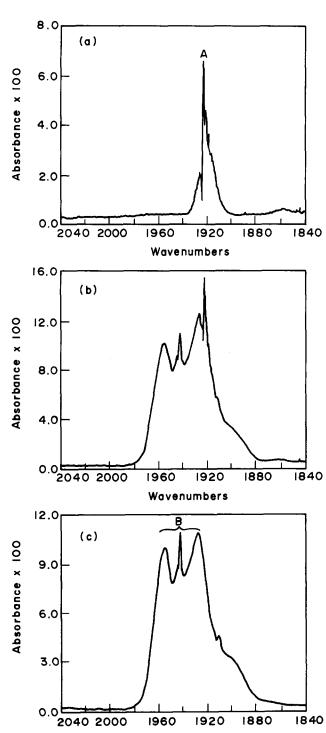


Fig. 1. FTIR absorption spectra of 48.0 torr of a 3:1 mixture of CF₃I/O₂: (a) before photolysis; (b) after 6.0 mins photolysis at 253.7 nm; (c) (b) minus (a).A = $\nu_2 + \nu_4$ CF₃I; B = ν_2 CF₂O.

Wavenumbers

 $CF_3I/12.0$ torr O_2 before and after 6.0 mins photolysis at 253.7 nm. The difference between these spectra is also shown. The rate of production of CF_2O , $d[CF_2O]/dt$, was measured in the following manner.

FTIR spectra were recorded after each of several successive low-pressure mercury lamp photolysis periods

of 2.0 or 3.0 mins. The spectra resulting from the difference between the absorbance spectrum of the CF₃I/O₂ sample obtained after photolysis for a time, t, and that of the CF₃I/O₂ sample recorded prior to photolysis were plotted. The optical density of the P and R branches of the ν_2 C=O stretching mode of CF₂O at 1956.1 and 1943.1 cm⁻¹ respectively were then measured as a function of photolysis time. Least-squares plots of the CF₂O absorbances at 1956.1 and 1943.1 cm⁻¹ versus photolysis time were related to partial pressures of CF₂O by calibration mixtures made up of CF_2O (0.00-1.00 torr in 0.05 torr increments) in 48.0 torr of a 3:1 CF₃I/O₂ mixture. The gradient of the absorption at 1956.1 cm⁻¹ was 15.5×10⁻² absorbance units torr⁻¹; that at 1943.1 cm⁻¹ was 16.6×10^{-2} absorbance units torr⁻¹.

In addition to the observation of CF₂O by FTIR spectroscopy, molecular I₂ was identified in three separate experiments as a photoproduct of CF₃I/O₂ mixtures by optical absorption techniques. Comparison of the rate of loss of CF₃I, which was monitored at 270 nm (σ =6.05×10⁻¹⁹ cm² mol⁻¹ [11]) with the rate of formation of I₂, monitored at 500 nm, (σ =2.18×10⁻¹⁸ cm² mol⁻¹ [12]) gave an estimate for the quantum-yield of formation of I₂, $\Phi_{12}^{253.7}$, of 0.47±0.04 (error = σ). A quantum-yield of 0.5 would be consistent with the production of I₂ via recombination of atomic I:

$$2(CF_3I + h\nu \longrightarrow CF_3 + I) \qquad (\lambda = 253.7 \text{ nm})$$
$$I + I + M \longrightarrow I_2 + M$$

The slightly lower value of 0.47 may be partly explained by the observed absorption of I_2 on the xylene-based shellac that was used to equip the CF_3I/O_2 sample cell with optical windows.

3.3. Quantum-yield of CF₂O

Table 1 summarises the compositions of the CF₃I/O₂ sample mixtures in the seven experiments carried out, together with values of $I_o^{253.7}$ in units of quanta s^{-1} and of d[CF₂O]/dt measured at 1943.1 and 1956.1 cm⁻¹, in absorbance units min⁻¹. Conversion of these units for d[CF₂O]/dt to mol s^{-1} requires the appropriate gradient of the CF₂O/CF₃I/O₂ calibration plot, and was calculated in a manner analogous to that illustrated above for d[CO]/dt. The means of the two values of d[CF₂O]/dt measured in each experiment were used to determine $\Phi_{CF2O}^{253.7}$ from the expression:

$$\Phi_{\text{CF}_2\text{O}}^{253.7} = \frac{\text{d[CF}_2\text{O]}}{I_2}$$
 (iii)

where I_a is the light intensity absorbed by CF₃I in units of quanta s⁻¹. I_a is given by

$$I_a = I_0[1 - \exp(-\sigma.c'.l')]$$
 (iv)

where σ' is the absorption cross-section of CF₃I at 253.7 nm and 298 K (4.75×10⁻¹³ cm² mol⁻¹ [11]), c' is the concentration of CF₃I (36.0 torr; 1.15×10¹⁸ mol cm⁻³ at 300 K) and l' is the optical path length (7.6 cm).

The mean value of $\Phi_{CF_2O}^{253.7}$ listed in Table 1 is 1.05 ± 0.04 (error = σ). The major sources of this error arise from: (i) changes in the alignment of the CF₃I/O₂ sample and TFAA actinometer gas cells relative to the lowpressure mercury lamp upon their replacement for photolysis after recording FTIR spectra; (ii) uncertainties in the measurement of the intensities of the vibration-rotation lines of the CO photo-product of the TFAA actinometer; (iii) uncertainties in the measurements of the absorbances of the ν_2 P and R branches of the CF₂O photo-product. These errors are random errors. The error in the published value of $\Phi_{CO}^{253.7}$, which is required for actinometry, introduces a systematic error of 7%. $\Phi_{CF_2O}^{253.7}$ is therefore revised to 1.05 ± 0.11 where the error limit encompasses both random and systematic errors.

3.4. Mechanism of CF₂O formation

The primary photolytic step for CF_3I is absorption involving an $n-\sigma^*$ transition to a repulsive electronic state which immediately dissociates by breaking the weaker C-I bond:

$$CF_3I + h\nu \longrightarrow CF_3 + I$$
 ($\lambda = 253.7 \text{ nm}$)

Two other primary photolytic steps that produce difluorocarbene, CF₂, and either molecular IF or atomic I and F, are also energetically possible since one photon of wavelength 253.7 nm is equivalent to 113 kcal mol⁻¹:

$$CF_3I + hv \longrightarrow CF_2 + IF$$
 $CF_2 + I + F$

Although CF₂ is formed by secondary photolysis of CF₃' radicals isolated in argon matrices at 4.2 K [13], the present study confirms that in the gas-phase, CF₃' radicals are produced exclusively upon 253.7 nm photolysis of CF₃I since there was no FTIR spectroscopic evidence for IF or for C₂F₄. This latter species would be produced from the self-reaction of ground-state ¹CF₂, which unlike ³CF₂ does not readily combine with O₂ to form CF₂O at room temperature [14]. The absence of IF is not unexpected since it is unstable and disproportionates heterogeneously into I₂ and IF₃ or IF₅.

The reaction between CF_3 radicals and O_2 is rapid and leads to the formation of CF_2O with a quantum-yield of unity. In the presence of sufficient O_2 , CF_3 radicals neither react with atomic I or molecular I_2 to reform CF_3I , nor with themselves to yield C_2F_6 , since these products would both reduce $\Phi_{CF_2O}^{253.7}$. CH_3OOI has

recently been detected by ultraviolet absorption spectroscopy [15]. It is formed via the reaction of CH₃O₂. with atomic I in the gas-phase 253.7 nm photolysis of CH₃I/O₂/N₂ mixtures and supports our previous proposal [3] that CF₃OOI is a key intermediate in the matrix-isolated CF₃I/O₂/Ar system which leads to CF₂O/ IF molecular complexes via CF₃OI. However, IF was not observable in the present gas-phase CF₃I/O₂ system. It is therefore suggested that a mechanism consistent with the quantum yields of 1.05 for CF₂O and 0.47 for I₂ measured here involves CF₃OOI. This species is produced in the reaction of CF₃O₂ radicals with atomic I, which acts as a chaperone for the observed chemistry. CF₃OOI quantitatively and rapidly decomposes to CF₂O and FOI, with the latter dissociating to yield I₂ and F_2 and O_2 :

$$CF_3I + h\nu \longrightarrow CF_3 + I$$

 $CF_3 + O_2 + M \longrightarrow CF_3O_2 + M$
 $CF_3O_2 + I + M \longrightarrow CF_3OOI + M$
 $CF_3OOI \longrightarrow CF_2O + FOI$
 $FOI + M \longrightarrow I + OF + M$
 $I + I + M \longrightarrow I_2 + M$
 $OF + OF + M \longrightarrow F_2 + O_2 + M$

Recent ultraviolet absorption spectroscopic detection of RO₂Br species in the gas-phase [16] suggests that the mechanism of the photo-oxidation of CF₃Br, in which CF₂O is also produced with a quantum-yield of unity, may proceed via CF₃OOBr in a manner analogous to that above, rather than by successive self-reactions of CF₃O₂ and CF₃O radicals [8]. In the absence of a halogen atom chaperone, it appears that CF₃O₂ and CF₃O radicals may react together to form CF₃OOOCF₃ [17] which reduces the quantum-yield of CF₂O. Finally, the possibility remains that the gas-phase reaction of CF₃O₂ with NO may proceed via CF₃OONO and its isomer, CF₃ONO₂, with NO acting in a similar manner to atomic I and Br.

4. Conclusion

The quantum-yield of formation of CF₂O in the 253.7 nm photolysis of CF₃I/O₂ gas mixtures has been determined as approximately unity by using FTIR spectroscopy to measure CF₂O concentrations and to monitor the CO photoproduct of the TFAA actinometer system employed. The value of unity is consistent with that of the quantum-yield of CF₂O formed upon 184.9 nm photolysis of CF₃Br/O₂ gas mixtures [8]. A quantum-yield of iodine formation of 0.47 was also measured by ultraviolet-visible absorption spectroscopy. It is suggested that CF₂O and I₂ are formed via the dissociation

of CF₃OOI which is produced in the reaction of CF₃O₂ with I.

Acknowledgements

We thank the SERC and AERE Harwell (now AEA Consultancy Services) for financial support, and Dr. M.E. Jenkin (AEA Consultancy Services) for helpful discussions.

References

- World Meteorological Organisation Global Ozone Research and Monitoring Project - Report No. 20, Scientific Assessment of Stratospheric Ozone: 1989, Volume II, Appendix: AFEAS Report, pp. 161-266.
- [2] T.J. Bevilacqua, D.R. Hanson and C.J. Howard, J. Phys. Chem., 97 (1993) 3757.
- [3] K.C. Clemitshaw and J.R. Sodeau, J. Phys. Chem., 93 (1989) 3552.

- [4] All thermochemical data are from R. Atkinson, D.L. Baulch, R.A. Cox, R.F. Hampson, Jr., J.A. Kerr, J. Troe and R.T. Watson, J. Phys. Chem. Ref. Data, 18 (1989), except Δ^o, 298 (CF₃O₂) and Δ^o, 298 (CF₃O) which are from V.I. Vedeneev, M. Ya. Goldenburg and M.A. Teitelboim, 9th Int. Symp. on Gas Kinetics, Bordeaux, France, 20-25 July, 1986, Abstract E49, and Δ^o, 298(IF) which is from the Handbook of Chemistry and Physics 64th Edition, CRC Press, Boca Raton, FL, 1984.
- [5] J.S.Francisco, Z. Li and I.H. Williams, Chem. Phys. Lett., 140 (1987) 531.
- [6] H. Saathoff and R. Zellner, Chem. Phys. Lett., 206 (1993) 349.
- [7] K.C. Clemitshaw and J.R. Sodeau, J. Phys. Chem., 91 (1987) 3650.
- [8] R. Withnall and J.R. Sodeau, J. Photochem., 33 (1986) 1.
- [9] G.A. Chamberlain and E. Whittle, J. Chem. Soc., Faraday Trans. I, 71 (1975) 1978.
- [10] P.D. Mallinson, D.C. McKean, J.H. Holloway and I.A. Oxton, Spectrochim. Acta, 31A (1975) 143.
- [11] L. Brouwer and J. Troe, Chem. Phys. Lett., 82 (1981) 1.
- [12] J. Tellinghuisen, J. Chem. Phys., 58 (1973) 2821.
- [13] K.C. Clemitshaw and J.R. Sodeau, J. Phys. Chem., 92 (1988) 5491.
- [14] J. Heicklen, Adv. Photochem., 7 (1969) 57.
- [15] M.E. Jenkin and R.A. Cox, J. Phys. Chem., 95 (1991) 3229.
- [16] G.D. Hayman, M.E. Jenkin and T.P. Murrells, Part 8 (LACTOZ) Eurotrac Annual Report, Commission of European Communities, (1990).
- [17] O.J. Nielsen, T. Ellerman, J. Schested, E. Bartkiewicz, T.J. Wallington and M.D. Hurley, Int. J. Chem. Kinet., 24 (1992) 1009